– This episode of “StarTalk” is brought to you by CuriosityStream. (upbeat music) This is “StarTalk,” I’m your
host, Neil deGrasse Tyson, your personal astrophysicist. And on this edition of
“StarTalk” it’s office hours, which is another version
of cosmic queries, we’re just calling it office hours because you can come in
with any question at all, on any subject. And I got my man, Chuck Nice here. – Hey Neil, what’s happening?
– It’s doing? – Of course, brother.
– Okay, alright. – How are you, man?
– Thanks for doing this. – Hey, it’s always my pleasure. – I haven’t seen the questions yet. – No you never do. – One day you’ll show me the questions. – No I will not. – I’ll mug you in the street. – Yeah?
– Get the questions. (hosts laugh) So what do you have?
– That’d be pretty funny. I think I just saw Neil
deGrasse Tyson beat the hell out of a guy and run off with some papers. I wonder what was that, what was that about? Yes, of course you know we take questions from all over the internet,
wherever you can find us. We always start with the
Patreon patron question. – Alright, let’s do it. – This is Ari Mody, or
Ari Moudy, from Patreon, Ari says, “Hey I’m from Los Angeles. “Some astrophysicists
say there will eventually “be universe death when the
last atoms are ripped apart “by the expansion and
we enter the big freeze. “But we are also told a
universe can come from nothing, “and taking any volume of empty space, “and waiting a gazillion years, “matter can and does arise from that void. “Aren’t these contradictions? “Why wouldn’t something from
nothing happen after heat death “if that is a fundamental part
of how the universe works?” So Ari Maudy– – He totally answered that question. – He just got everything man. – All up in it.
– All up in it! – In the question. – He was like, “I’m going
shopping for astrophysics! “And I’m gonna put
everything in the cart!” – Everything in. So right now the
temperature of the universe, if you put a thermometer out there and it sort of could receive
the energy of the void, okay, basically the cosmic
microwave background, that energy gives you about three degrees. But we used to be much hotter
when the universe was smaller. We’ve been expanding and cooling. Not fundamentally different in principle, I mean, the mechanisms are
the same, but when you, have you ever let air
out of a bicycle tire, does anyone still ride bicycles? – Of course, yes. I do it all the time, and
it’s not even my bike. I just walk around Manhattan,
I see a bicycle tire, and I’m just like, you
know what, (hisses). – Expanding air is cooler than the air that it was before it
expanded, so the air going past your thumb feels cool. It’s not just ’cause it’s moving, it’s actually dropping in
temperature by expanding. And so the universe expands and cools, it’s a thermodynamic fact. And by the way, we can
look to far-away galaxies whose light came to us
from a time in our past, and there are measurements
you can make and show that that galaxy was
feeling a warmer temperature in its time than the temperature
that we measure today. – That’s pretty wild. – It is completely wild. – Because you’re not talking about a very, a big source, like that light source is. – It’s a light source,
yeah, but it’s ubiquitous. So everybody feels it,
and there’s certain. – So how exactly–
– There’s certain atoms where an electron will
move in a certain way depending on the bath
it’s in, the bath of life. – I got you, that makes sense now. – And so they’re a little more excited farther away than over here. – That makes perfect sense. – So we’re not just making this up, okay, so– – You know, I had to, listen, I just had to make sure,
you know what I mean? – So, and as we get twice as big, they drop the temperature in half. Three times big, it drops it to 1/3. – So there is a directly inverse
proportional relationship – Correct.
– To that drop. – Inverse proportion, very good. – Yeah, you like that, you like that? – I saw what you did there. – Out of nowhere with that. – Not just proportional,
inverse proportional. So as this continues, the
temperature of the universe drops, all stars will ultimately
burn out as they shut off one by one in the night sky. As they shut off in the
night sky, you can ask, “Well, are we making new stars?” Well, we are, with the gas
clouds that are still out there, but then they make a star
and then that star dies. So the gas gets sort of
trapped up in stars that die. Alright, so then there’s
no more gas to make stars. Then the atoms themselves decay. And ultimately, in about
10 to the 30 years or so, which is a huge number, huge
number, the protons decay. The very structure of matter
itself loses all integrity. And so the universe ultimately
dies not with a bang, but with a whimper, and
not in fire, but in ice. – It peters out. That’s, wow. – After I said those poetic
words, you said “peters out”? That’s the best you got for me? – Well, that was the joke. – Okay. (laughing) – That was the whole joke. – Okay, so this idea that
you can get something from nothing, I just wanna spend
a minute on that, if I can. So if you start with nothing
and then create something that has both positive
and negative energy in it, all that matters is that the sum, you add them together
and you get zero, okay? So you can start with
nothing, yet have something, if the total energy goes to zero. So another way to think about that is, let’s say you have a level field, and say, “I wanna dig a hole.” So I’m gonna dig a hole and stack the dirt over on the left. So I keep doing this,
I can make a mountain as high as I want. – Yeah, but you’re gonna
have a hole just as deep. – I’m gonna have a hole. (laughing) I’m gonna have a hole.
– I got a hole, right. – I got a hole.
– There you go. – So what we’re not sure about is whether you create another universe within this universe that has
expanded out of that void. Our best understanding of
this multiverse hypothesis is that the universe that’s
created is not causally, what we say, causally connected
to what’s outside of it. So you could, in principle,
have multiple universes popping up into existence,
but in the expansion and the edge of what that universe is, you have no way to interact with it. So there you have it.
– Wow. – We’re stuck in this one.
– We’re stuck in this one, and that’s all there is to it. That’s pretty wild. Man, that’s a, well, listen. – He got his money’s worth on that one. – Yeah, he got some money’s worth, bro. – That’s right.
– Yo, Ari. That’s a great question, it took us, wow. – It took us to the edge of the universe. – The edge of the universe and back. – Not only in space, but in time. – Could you go to the edge of the universe without space and time? – Actually, once Einstein
put forth relativity, where the fourth dimension is time, and people say, “Well,
that’s weird, why is that?” No, no one has ever been at a
place unless it was at a time. No one has ever acknowledged a time unless they were at a place. Think about it, if I say to you, “Chuck, I’ll meet you
tomorrow at 10 o’clock,” what’s your next question to me? – What’re we doing? – No, that’s not! (laughs) Okay, what’s your question after that? (hosts laugh) – Of course, where? – Where?
– Where? – I give you a time, you ask where. Okay, I say, “Chuck,
I’ll meet you tomorrow “at the corner of 33rd and Third.” – [Chuck] When? – When. We know intuitively that
our path through life involves the juxtaposition
of space and time. We know that, intuitively. We just don’t think of it in those terms, because they’re measured
by such different tools. A watch and a map, right? But in fact, they’re
conjoined, and Einstein formalized that statement in
his theories of relativity. – Amazing.
– Yeah. – That is great stuff.
– You got it. – Alright, let’s move
on to another question. Hey, how about Woody, it’s, clearly this is a Pixar,
Disney-Pixar character, who is just writing in. Woody would like to know, “do lasers and solar panels work together? “We could design and build the components “for specific purposes of
wireless energy transfer “at great distances. “Which frequency on the light spectrum “would be best suited for this task? “Then how would you resolve the problem “of a five-watt laser being a dribble, “like Chuck at three
a.m. after a few too many “500-kilowatt laser,” what? What the hell is this guy talking about? – Okay, I think I got his point. So what he wants to do
is, I have energy here, and I wanna put it over there, alright? By the way, that, when you think about it, is kind of like what war is. – Okay.
– What is a battle? I have energy here, and I
wanna put it over there. That is kinda what the waging
of war is all about, right? I have a bow and arrow, I put energy in the arrow here,
– (blows on mic) – And then the energy goes over there. There’s a bullet, has energy,
– (blows on mic) – There’s a bomb, there’s
a delivery mechanism, thanks for the sound effects there, Chuck. – Yeah, no worries. – So I think there, what
he wants to, is it he? – Yeah, yeah, yeah.
– Yeah, Woody, I assume. What we wants to know is, if
I have laser energy over here, and laser goes fast
and it’s very directed, can I just have a catcher’s mitt somewhere where I wanna deliver it,
and then use it there? – And then use it as energy. – In principle, nothing’s
stopping that, okay? Except the curvature of earth’s surface, if you believe in a round earth, so you can’t beam light and bend it, okay? – Unless you have a gravitational force that will bend it for you. – Yes, what would work,
so on a black hole, you try to send a beam of
light, it’ll just curve and go around the black hole itself. But on earth and sort of normal
gravity that we live in, no. So it has to be a line of sight delivery. If it’s enough energy
to be useful, it’s gonna be pretty dangerous to cross that beam. (hosts laugh) I’m just sayin’. – I shouldn’t be laughin’,
it’s really serious, what you said, I mean–
– It’s really a serious issue. If it’s enough enough energy
to do good stuff with it– – Right, it’s enough energy
to do some real harm. – Cut you in half just
walkin’ down the street. – See, what’s funny about that
is, if you’re smart enough to make that happen, but you
didn’t even think it through, – Completely, yeah.
– And so you actually do it, and like, on the test run, you
got the catcher’s mitt there, and you’re just like,
oh my god, look at this, we’ve actually figured out a way to transfer energy over great distances and oh, damn, we just killed somebody. Or a more tragic version
of that story was, “let’s celebrate and dance!” And then they accidentally
dance into the beam. (hosts chuckle) It kills the inventor of the– – So your person has poetic justice. – Right, no, that one, so
yeah, so that’s an issue. So, insulated wires, I mean
we kinda already do that with electricity,
– Do that with fiber optics. – Well no that’s information
we send by fiber optics. – Not energy itself,
so you’re right, okay. – It’s a small amount of
energy but it’s not enough to– – It’s not enough to power anything. – To power anything, correct.
– Right, I got you, I go you. – And what we learned,
here’s just an interesting, you didn’t ask this, but
let me put this in the mix. Do you remember everyone’s
expectation of the future as imagined in the 1950’s and 60’s? Flying cars, motorized
walkways, people were thinking that energy would be very
accessible, basically. It takes energy to fly
cars, but that’s not what became accessible;
information became accessible. So we live in an information
age, and it costs you nothing energetically to send information. – [Chuck] True! – And as a communicative
species, information is high, it’s a highly valued commodity. So we send information around the world, you know, with no effort,
yes it’s big effort, but no, the investment of energy that
requires is extremely low. – [Chuck] True. – So back then, no one
imagined a world where, so, the movie “2001: A Space Odyssey?” – Yeah. – The computer was this
big thing in the center of the spaceship and it
was controlling everything. No one is imagining that
you’re gonna carry a computer on your hip, plus entertainment
on your, this was not, ’cause it’s information,
and distributed information is what that is. Alright, so we do send energy,
but we send it in wires and they’re insulated so that you don’t touch the wire and get electrocuted. That’s the electricity
version of a laser, right? Here’s the wire sending energy here? Go grab it with two hands,
no you’re not gonna do that. – Now go stand in some water, hold this. (Neil Laughs) – Hold this and stand in a puddle. I just took out some
insurance on you. (laughs) – Got time for a few more
questions in this segment, okay? – Alright, Zachary Sprodlin
wants to know this: “given your vast knowledge
of physics,” and um, well yes, your vast knowledge of physics, “what are your thoughts on
a holographic universe?” Okay, I’ve never heard
anybody ask this question, this is okay, “do you believe the universe “to be holographic in nature? “If so, do you think we
should be researching more “about the perceived difference “between the particles and waves, “or are we already doing as
much as our tools will allow? “What are your thought on nature of waves “versus particles and this
perceived separation therein?” – Okay, so that’s a whole other thing, but let me start with
the holographic universe. I don’t claim to be like, a total expert in the holographic
universe, but I’ll share with you what I know and
my understanding of it. There are calculations
you can do that shows that in a black hole in the event horizon, that’s the point of no return, that if you fall through
that event horizon, all the information contained within you gets remembered at that event horizon. – [Chuck] Okay.
– Okay? So that’s a little bit
spooky because you can ask the question, are we something real or are we just some–
– [Chuck] Imprint. – Imprint!
– [Chuck] Just an imprint. – Of some other thing that’s real. – [Chuck] That was real.
– That’s correct. – That’s it, that’s– – It’s almost like the
Plato’s shadows argument or conversation that you have. Is there some higher reality of which we are just
shadows representing it? And so it’s a spooky idea
that has theoretical taproots, but I wouldn’t know how to test that. Maybe the folks who came up with this have thought that
through, but I’m not there with them on that, I don’t
know how you would test this. But usually, if the theoretical
underpinnings are working, and they’re based on other
theories that are well-tested, like relativity and
black holes and all this, you wanna take it seriously. They didn’t just pull it
out of the ether, okay? So that’s an intriguing fact. Now, waves and particles, the duality? Yeah, matter is waves and particles, okay? Do you know why an
electron microscope works? – Um, because it costs a lot of money? I don’t know, I just really
know they’re really expensive. – Why is the word electron in
the same phrase as microscope? Microscopes use waves, light waves, okay? Well you can’t, can I blow your mind? – Go ahead, better that. (laughs) – Are you seated? – I’m seated – Okay, here you go. Does it make sense that
with whatever microscope you’re using, you cannot
see detail smaller than the wavelength of light you’re using to illuminate the object? – [Chuck] That makes sense. – Does that make sense? – [Chuck] Absolutely because,
you’re, it’s what’s– – That’s your blunt instrument,
that’s what you think, okay. – As a matter of fact,
you couldn’t see it, like, no matter what you’re looking
at, if there is no light then you don’t see
anything in the microscope. – Anything, okay.
– That’s it, you see nothing. – So you need some light, so
now you turn on the light, alright, now, if I’m using red
light, red has a wavelength, a certain wavelength, okay? But if I use light that’s
shorter wavelength, so orange or yellow or green or blue,
of the visible spectrum blue, or violet, has the shortest
of the wavelengths. So if I have a violet light
microscope, I will see detail better than I would in a
red light microscope, okay? – You’d also see all the
really nasty, cruddy stuff ’cause it’s a black light,
and it’s just like, ew, I don’t know what was on this slide, but– – That’s if you go,
– These people are disgusting. – That’s if you go ultraviolet, – Right, ultraviolet
– Not just violet, Ultraviolet.
– Ultraviolet. – Yeah, get your ultra goin’ there. So here’s the thing.
(Chuck laughs) It also means you can
pack more information into a certain, sort of, size. It’s why blu-ray players
have higher resolution than regular CD’s, ’cause regular CD’s didn’t use blue lasers. – And who knew streaming was
gonna take them both out? Regular CD’s and blu-ray.
– Oh sorry, let me explain. CD’s are what we used to, you know, or DVD’s (laughs)
– For you kids out there. Used to be somethin’ called a CD. Right, right, but go ahead. – So the point is, an electron
has a wave associated with it that is in the realm of
deep, deep UV into x-rays. So if you illuminate a
source with electrons, you basically have x-ray
wavelength light telescope. – That’s very cool. – That’s what you have, and you can see, that’s why if you see pictures taken from an electron microscope,
you’re seeing the fibers on the microbes,
– Right, exactly. That’s amazing.
– It’s like, nasty, yes. – Because you’re using
the wave of the particle. – Of the particle. – The wave of the particle, damn! – Damn. – Damn.
– Damn. – Yo that’s hot, that’s hot.
– Bam, bam. And so my point is, there is no meaning for you to ask, is it
a wave or a particle? It is both, and just ’cause
your brain can’t wrap your head around it doesn’t mean it’s not true. – Wow. – We don’t have, when I
say your brain I mean, our vocabulary, our
awareness of reality requires that we choose, is it a
this, or is it a that? Is it a book, is it a chair? Are you a this, or are you a that, okay? We’re forcing this in ourselves because we like compartmentalizing. This is part of the gender thing. Are you a boy or are you a girl? Which is it, okay? – [Chuck] Well, I haven’t decided. – You haven’t decided, so this forcing, it seems to be a deeply human thing, but when it’s time to
understand the universe, – It’s not nature, it doesn’t
necessarily have to be nature. – It’s not cosmic
nature, yeah, you got it. – We gotta take a break. – Alright. – We are in Neil deGrasse
Tyson’s office hours on “StarTalk,” we’ll be back in a moment. – [Chuck] Hey, if you want to learn more about our incredible universe,
you have to check out CuriosityStream’s “A
Curious World” series. Okay, that means the name
of it is “A Curious World” and it comes in a series;
it’s not about baseball. They’ve done some incredible visualization of the formation of the universe, I mean, that you and I are in the same universe. You’ll be able to see what it looked like before there were planets and stars, what it looked like when the universe was mostly hydrogen and helium. Or should I say, hydrogen and helium? Okay, that was unnecessary. Subscribe to CuriosityStream
right now to watch. It’s just $2.99 per month,
and for “StarTalk” fans, the first 31 days are completely free if you sign up at
curiositystream.com/startalk and use promo code StarTalk. You’ll get unlimited access to
the world’s top documentaries and non-fiction series
with CuriosityStream. Go ahead, sign up now. – We’re back on “Star
Talk:” office hours edition. Which is a way of saying,
cosmic queries, but you can pull that query from wherever
you want in the universe. And we got Chuck to mangle
your name as you (laughs) – Absolutely. – You got a little better, Chuck. Little better, I wanna, I’m
an educator, I wanna give– – I think it’s part of
the charm of the show, the fact that I can’t read
– Alright. – Or that I can’t figure out anybody’s name, so.
– Alright. – Uh, let’s move on to Kyle
Ryan Toth, how easy was that? – Kyle Ryan Toth, three syllables. – Three syllables, hey,
– You got it all done. – Kyle, man, thanks brother.
– Although Ryan has two syllables, sorry.
– Yeah, Ryan has two, yeah. Not when I say it though, it’s “Ryan.” – Ryan, Ryan come on down
it’s time for dinner. – Hey Ryan! (hosts laugh) – Ryan!
– Ryan! – How you doin’ man? Everything’s one syllable. How you doin’ man? (hosts laugh) Alright, Kyle says– – Who was it, it was Jeff Foxworthy, who said in Texas there are
certain words that are like, single syllable words but
they have multiple syllables? – Yes. – Like, I don’t give a
“she-ee-ee-ee-ee-it.” – (laughs) Right, and it’s
one syllable, but yeah. That’s like, I have a friend who was like, if you’re Italian, “gee”
sounds like one syllable, but it’s a whole sentence, so, “gee?” “Yeah, not yet,” you do know, but, – I don’t know what that–
– Did you eat. – Oh, oh, jeet, jeet!
– Jeet (laughs) – Why is that if you’re Italian? – I don’t know, that’s
what he told me, so. – Oh you mean Italian
descendants speaking like within a Brooklyn accent.
– Yeah, yeah. – Hey, jeet?
– Hey, jeet? – Oh yeah, okay, that should,
– Right, “no I’m good.” I’m thinking pure Italian, I’m saying, no, I’m not getting that, sorry. – No this would be, right,
the diaspora Italians. – I got one! – Go ahead. – Nah I’m saying? – Nah, and wait, ya mean?
– That is, do you know what I am saying, do you
know what I am saying, – Nah I’m saying?
– Nah I’m saying? And, ya mean? – Y’all know what I mean? Yup, there you go, ya mean.
– Yep, yep, ya mean. Nah I’m saying?
– Alright here we go. – (laughs) I would do
the rest of this show, I’m gonna say, I’m give the
answer and say, nah I’m saying? (hosts laugh) – Alright here we go. – Nah I’m saying? – There you go. – How do you spell it? N-O-M-‘-S-A-I-N, nom’sain? – Nom’sain?
– Nom’sain? – Mhm.
– Mhm. How do you spell “mhm?” – “Mhm.” – It’ un-spellable. – No, you can, it’s “mhm.” – “Mhm.
– “Mhm. (hosts laugh) And if you’re a black woman, it’s, “mhm.” Oh, the hands gotta get all in there. – Mhm.
– Mhm. – Mhm. – That’s the same thing, you
just went a higher octave. – Well no, the pitch
actually connotes the feeling behind the “mhm,” so there’s
the affirmation “mhm,” which is like, baby, you look good, “mhm.” – Okay.
– And then it’s just like, Uh, um, so I didn’t go to
work today, I’m sorry, “mhm?” – Oh, okay.
– See, yeah. – So the pitch carries meaning. – The pitch carries meaning. – Even though you’re saying exactly the same thing.
– The exact same thing, but it’s all in the pitch,
you know what I mean? – Okay, that’s good, I
learned something today. – And then there’s, “mhm!” – No that’s a, that’s a “you
are lyin’ through your–” – That’s it!
– That’s (laughs) – You’re absolutely right! It’s “mhm.”
– You are lyin’. – Right, better known as, “negro, please.” So there you go, um here we go, this is– – I got a word where the
pronunciation changes just by capitalizing the first letter. – Wait a minute, go ahead. – No, you’ll get that later, okay go. – Aw, what a tease!
(Neil laughs) Alright, okay, here we go. – You want the word? I’ll tell you the word. – No, no, no, let’s make
it a tease, we’ll do it after the question.
– After the break, after next break, okay.
– Oh, after the next break, oh that’s real tease.
– That’ll keep you comin’ back.
– You gotta stay here now. (hosts laugh) – You are forced.
– You are forced to be here, Mhm.
– Mhm. – Okay here we go: “imagine
a planet orbiting close “to a black hole and experiencing
extreme time dilation. “How would outgoing signals “of electromagnetic
communication be affected? “Would we still receive such signals? “Would they be distorted
and/or appear very slow-paced?” – Yeah, no, yeah, it still
goes at the speed of light. If the planet is outside event
horizon, it’s not trapped, and it’s in orbit, yes, it is
in a deep gravitational well. There is very serious
time dilation relative to anyone looking at them. They will send out a signal and the energy of their light as it comes out will, it will continuously lose
energy, so that by the time, not speed,
– Not speed, just energy.
– It’ll still come out the speed of light,
but if it starts out at a high-energy band of
light, by the time it gets out, it’ll be a very low-energy band of light. – Interesting!
– Yeah, so you’re gonna get very low, low energy. – See, and so, that’s counter-intuitive for what you would think,
because you would think that it would lose speed, but you can’t, light can’t lose speed.
– Not light, that’s right. – Light cannot lose speed. – And by the way, a way
to think about this is, if I send a beam of light,
it has a certain amount of energy and I do that in
one second, let’s say, okay? But now I’m looking at you,
and my one second is now, sorry, what you’re calling one second now takes an hour for me,
– Okay. – That amount of energy
that, if it’s packed into one-second delivery
time, has a certain intensity to it, but for now it’s taking you an hour to send out that energy as
far as my watch in concerned. So the energy gets
diluted over that ascent from the black hole.
– Interesting. – So yeah, it’s called a
gravitational redshift. – Right, oh, cool. – It has a term, there’s
probably a wiki page on it. ‘Cause I got good people, my
astrophysics, my community, I think we got some of
the best wiki pages, accurate wiki pages out there. – And by the way, it’s a hard page. (Neil laughs) ‘Cause, uh–
– I compete with other sciences, I
think we do a good job. – Oh no, you guys do a good job, but uh, I’m gonna tell you–
– Gravitational redshift. – What you don’t try
to do on that wiki page is make it easy for regular
people like me to understand. – Gravitational redshift, it’s there. – Yeah, gravitational redshift. – Hey first of all, that
was a great question, Kyle, so thank you so much. Alright, um–
– What else, bring it on. – Let’s go with Annie C. Hickman, and Annie wants to know this: she says, “I am a teacher and a–” – Give it up for the teacher. – Yeah, give it up, boom,
blow it up for the teachers. – “And a manual,” ’cause
god are they making such a sacrifice to just waste
your life on these kids. (hosts laugh) – Damn, Chuck. – You know I’m joking,
my mother was a teacher, I have nothing but the
utmost respect for teachers. She says, “I am a teacher
and a manual wheelchair user. “From time to time, my
students and I wonder “if a wheelchair could be powered in space “with fireworks, or
perhaps, they are ready “to get rid of me.” (laughs) – To send her up there.
– ‘Cause they want to send her to space and put
fireworks on her wheelchair. “Since fireworks are rockets.” – She’s thinking about propulsion here. – She is thinking about propulsion. “Also, would having
mobility issues on earth “be erased in space since
there is no gravity? “If you float around the
Space Station for example, “Aren’t you using your legs
for the need to balance?” You know, that’s a great
question, because people would think that in zero
gravity, that your movements might do something in terms
of affecting the way you drift about in zero gravity, so
what is the answer there? – So first, great question,
and so I presume it means she has power, she has arm
power to propel her wheels. So that’s a key element of this. So first of all, in space,
you don’t need the wheelchair. You have a wheelchair so that
you’re not on the ground, right, so, when I say
in space, I’m referring to zero-G in space, just
take that as a given here. So if you’re in space,
generally people are not maneuvering themselves with their legs. The spaceships are designed,
Space Station is designed to have grips.
– Oh, you’re right. I’ve never seen them use their legs. They’re always grabbing little grab-ons, and then they pull themselves, – And they swim through the air. – Like swimming.
– Yeah, exactly. And so you don’t wanna go
too fast, ’cause you have to stop somewhere at the
other time, and you gotta be ready to stop, so if you have full use of your arms and your arm
muscles, you’ll be doing what everybody else is
doing on the space station. – Oh man, that’s so cool. – So now, the difference
is, you won’t be able to do some of the, sort
of, acrobatics that they do to show you, so for example one of them is they’ll start rotating and
then they’ll bring their knees up to their chest, you might
be able to pull your own legs up if you don’t have use of
your legs, you would just reach down and grab them but
otherwise they’re pulling knees up and then they see
that they spin faster, and that’s just having spinning fun, like when an ice skater
brings their arms in, they spin faster?
– Right. – If you bring your
extremities in and you had a slight rotation before,
you have a faster rotation. And in case you don’t feel
nausea enough (laughs) for being in zero-G,
now you can just spin, and then you’ll throw up right on the spot
– And paint the walls. Go ‘head and paint the walls.
– Paint the walls (laughs) – Yeah, if you’re spinning
while you throw up, then there’s spiraling– – Oh, that’s a beautiful picture. (laughs) – That’s a beautiful picture, so I don’t think Nasa shows us, so– – So now okay, so now
back to her wheelchair and the rockets now, so here’s the thing, ’cause I’m thinking in my head– – It’s not about the chair. – No, no, no, I’m talking
about what she was saying, if you put rockets on a wheelchair, but on the wheels themselves,
would you propel yourself through space in that chair
even though you don’t need it, or would the rocket just
spin the wheel in place? – So what’ll happen is,
because the wheel’s on an axle, and so now you’re putting
something called torque onto it. Torque is a force that
’causes something to rotate. I’ve always loved the word. “Torque.”
– Torque. It sounds powerful.
– It’s a badass word. – It is, you know.
– Yeah, gimme some torque. Plus the car folks all like torque, too. – They love that, yeah,
600 pounds of torque. – Um, foot pounds.
– Foot pounds, thank you. – It needs a distance
and a thing, right ’cause it’s a distance from
the point of rotation. How many feet away and how
many pounds force to push it. So what you’ll do primarily
is rotate the wheels. But there’s something called conservation of angular
momentum, so if you’re in space and you wanted to keep your
wheelchair, if you sent wheels rotating one direction,
something has to compensate and rotate backwards, so
you’ll push the wheels that way and you’ll just rotate
in opposite directions. – [Chuck] So the two of you will be going in opposite directions spinning around. – Correct, so what you want is,
if there’s a force operating on you, you want the, this
is inside baseball here, you want that line of
force, if you extended it, to go through your center of mass. And that way your entire system moves– – [Chuck] It’s just moving all at once. Everything’s moving at once.
– All at once. If you’re off the center of mass, you’re gonna start rotating.
– You’re gonna rotate. – Yeah, you have some movement forward, but a lot of that’s gonna
go into your rotation, and you don’t want, you
wanna be stable out there. So there you go Annie, what you wanna do is lose the wheelchair,
– Lose the wheelchair. – Altogether, you don’t need it. – You don’t need it, yeah. – Yeah, very cool. – And she lights fireworks
rather than just those jetpacks, so you can take like, roman
candles or whatever, light it, and since that has a, a roman
candle is intermittent, right? So you can just adjust it.
– Hold it where you want. And let it pull you.
– And let it pull you, yeah. – Very cool.
– Very cool. God I wanna go to space now, okay. And throw up all over everyone. (hosts chuckle) Alright, do we have time for another one? – Yeah, yeah, couple more, let’s do it.
– Couple more? Okay, here we go, this is Jay Degator. Jay Degator wants to know this. What, uh–
– We’ll go with that, Chuck. – Yeah, hey man.
(Chuck laughs) Hey Jay, I’m sorry. – We’ll go with that, nom’sain? (hosts chuckle) – It’s Degator, yamean? – Ya, I know what you mean, nom’sain? – Alright, here we go. (hosts chuckle) “What does the merging of black holes mean “for the future of the universe? “Could the universe
eventually, if it does start “a sort of contraction
phase, be the victim “of a collective hyper-massive black hole? “Could we be left with a
singularity or a black hole “containing all the
information in the universe “waiting for the next big bang “to trigger?
– Oooh. – “Or does the universe have
more not-so-distant problems “to worry about?” (laughs) – (laughs) Yeah, prioritize your issues. – Prioritize, right. – So black holes are not as voracious as lore leads us to believe. There’s a black hole in
the center of our galaxy. And it’s what we call a
super massive black hole, I forgot the exact mass,
hundreds of thousands of times the mass of the sun.
– Wow. – I’d like, 600,000, but
it might be a million. I forgot the number, but it’s large, okay? And the formation mechanism
is still a little bit of a frontier in my field. You can merge two black holes
if two galaxies collide. – [Chuck] Right, and we’ve
seen that happen, actually. – It’s happening all the
time, every day, all the time. And so as they collide, the
black holes will ultimately find each other and then they
will merge, and then you have a black hole twice as big, but
the black hole’s not reaching out if you were not otherwise
falling into a black hole, you’re not gonna now start
falling into the black hole. We are safe–
– It’s not a drain. – It’s not a toilet bowl drain, right. – So we’re not gonna one day land– – We’re not cosmic poop.
– Right. – Well some of use are. – So no, in fact, in the
very distant universe, black holes, ultimately, will evaporate, according to Hawking radiation, it’s a, and it’s a really interesting phenomenon. – So now, okay, see– – Can I tell you what the phenomenon is? – Go, please, yeah. – So a black hole has very strong gravity. Well, how much gravity does it have? Well, you can think of the
gravity having a density of energy, we call it the
energy density of gravity, okay? In it’s vicinity, every now
and then, spontaneously that energy becomes particles
according to E equals M C squared. It’ll do that just,
spontaneously, and you make a particle pair, a matter and
anti-matter particle pair, and they go in opposite directions, okay? Okay, by the way, they have
to go in opposite directions so that the momentum cancels,
’cause it started out as just a pocket of energy
sitting there doing nothing. You can’t have two, a particle
just going one direction and nothing canceling out
that motion in the other. – Oh, like a bazooka. – Yes! – The recoil in the other direction. Otherwise the person becomes– (hosts laugh) – That’s pretty funny
– That would be funny. Note to the next design. (laughs) – Exactly, that is awesome.
– Let me redesign that. – Why do you guys have
25 bazooka shooters? ‘Cause we got 25 shots. (laughs) – Yeah, so there’s a recoil
of that to send it forward. So same with the spaceships,
the rockets that take off, you recoil at the back,
all the exhaust, so, what point was I making before? – You were talking about, so
the particle as it evaporates– – Oh yeah, so what happens
is, so the energy density spontaneously makes a particle
pair, one particle falls into the black hole and the other escapes. That takes mass away from the black hole. – And therein lies,
– That is the evaporation of– – The evaporation of the black hole. – Yes, it’s very slow, but it’s real. – So this spontaneous
particle, basically– – It’s called Hawking radiation. – It’s Hawking radiation.
– That’s what it’s called. – So it’s the dissemination
of the particles that are opposites and one
going away, one going in, and then all of a sudden,
if it keeps continuing, the black hole’s gone. – It evaporates to nothing, correct. – Okay, that is really awesome. – We gotta take a break, we’ll be back for our third and final segment. When we come back, you will
learn word’s pronunciation changes just by capitalizing
the first letter. – Yes!
– Oh yeah. In Neil deGrasse Tyson’s
office hours on “StarTalk.” This episode of “StarTalk” is brought to you by CuriostiyStream. – We’re back on “StarTalk,”
cosmic queries edition, Neil deGrasse Tyson’s office hours, where we take questions on
anything, it doesn’t have to be in a category, and
they’re comin’ from everywhere. Chuck is helping me out
here, Chuck, keep it going. – Alright, let’s jump right, oh no, first you gotta give
the answer to the tease. – Okay, I like words a lot. – [Chuck] So what is this
word that you can capitalize the first letter and change
the meaning of the word– – Completely, yeah.
– Completely, I feel like I’m on NPR’s word puzzle
– (laughs) the word is P-O-L-I-S-H. – Polish, and then you
capitalize it, and it’s Polish. So one is what you do to shine something, and the other is–
– is your nationality, from Poland. – Very nice.
– It’s weird. – It is weird.
– It has nothing to do with this show, but I don’t know why, I– – So don’t start a sentence with polish. (hosts laughs) – Yes, ’cause it has to be capitalized. – It has to be capitalized.
– “Polish your shoes.” Polish my shoes?
– Polish my shoes? You racist son-of-a- (laughs)
alright, very cool, very cool. Let’s go to Fyodor Popov.
– Fyodor. – Fyodor?
– If it’s F-Y? – Yes it is.
– It’s Fydor, yeah. – It’s Fyodor, okay. – And last name? – Popov. Fyodor says this: “if you had to guess, “where lies the Great Filter?” Now, first of all, what
is the Great Filter? – I have no idea yet what
he’s asking in this question. So please proceed. – Alright, okay, there you
go, there you go, let’s move. – No, no, let me hear the whole question. – That’s it!
– What? – “If you had to guess,
where lies the Great Filter?” I don’t know what the
Great Filter is, I mean, unless it’s, you know, Britta. If it’s Britta, I’m good.
(Neil laughs) Where lies the Great Filter? In my refrigerator filtering my water. – The Great Filter, I have no
understanding of that question so we gotta go to
Wikipedia; maybe from that, I’ll be able to say something, okay? – Alright, so in that case,
what I’ll do right here is go to Wiki–
– Wiki, so you can help me out here from Wiki.
– And I’ll read it to you what they say it is. “The Great Filter, in the
context of the Fermi paradox, “is whatever prevents dead
matter from undergoing “abiogenesis in time to
expanding lasting life “as measured by the Kardashev scale.” – Okay, I can say something about this, I just didn’t know it was called “The Great Filter.” – The Great Filter, now all I got from that was Fermi
Paradox, I know what that is. – So the Fermi Paradox
was a question posed by the great physicist Enrico Fermi. So Enrico Fermi posed the
question, ’cause you can run the math, you can say, alright, how long has earth been here? How long did it take life to form? How long did it take what we
call intelligence to form? Now that we’re intelligent,
how long does it take to travel to another planet? Let’s say we have a spaceship, alright? Is it a generational ship? Fine, so it takes 10
generations to get there. Then you become pilgrims, set up tent, now from there you go
to two other planets. From each of those two
planets, they go to four more, from one to two to four to
eight, so it grows exponentially. You can populate the entire
galaxy with intelligence in a shorter time than
evolutionary timescales. You can do it in like a
million years or so, okay? – Yes, right. – That’s on an evolutionary,
the dinosaurs went extinct 65 million years ago, so– – That’s a very short time–
– Very short! – On an evolutionary scale.
– And it’s small compared with the lifetime of a planet,
and especially the future of the universe, so if that’s the case, why hasn’t it happened yet,
and where are the visitors trying to populate this
planet that we’re on? So it’s the Fermi Paradox: where are they? – Maybe they were already here. – Maybe we are their–
– Maybe we are them, you know. – There’s some religions
that are based on that, that God is actually the aliens, yeah. – Okay, right on, hey
listen, I don’t judge. (hosts chuckle) – Just by the fact that you
said that means you judge. (hosts laugh) I don’t judge how crazy people are! That’s what you said,
that was implicit in your, so this dead matter, they
don’t mean dead matter, ’cause that implies it
was once alive, they mean inanimate matter,
inanimate matter evolving to become self-replicating life. So the question is,
maybe that takes so long that it puts a damper on this whole– – On the other processes.
– On all the other processes. However, that happened
really fast on earth. We went from inanimate molecules
to self-replicating life within a couple of hundred million years. – Wow.
– And once you have life, life was there for billions of years. So that’s not really that long. – No, it isn’t.
– Right, right. So the filter, I don’t see
that as the big filter. You know what I think the filter is? – [Chuck] What? – Whatever urge you have
to colonize planets, and then all your descendants
have that same urge, there’s gonna be a point where, there’s a planet I wanna colonize, oh, but you wanna colonize that same planet. So then, what do we do? – You’re gonna have a blood
feud with your own family. – Correct, and so it
could be that the urge to want to expand is self-limiting because you will fight wars–
– You cancel yourself out. – You cancel yourself out.
– The very urge that causes you to strike out and
discover is the same urge that destroys you in the end. – Correct. – Wow.
– Right. And there are whole
categories of these kinds of problems in life, for
example, I don’t know if this still happens if you lose a quarter in between the base and back of the seat in your car and you reach for it? The act of reaching for it
separates the two cushions more and then it falls further in. – See, I’m cheap, that
whole seat’s comin’ out. (Neil laughs) – I’m gonna be honest–
– Gettin’ that quarter. – I have actually pulled a seat out to get to money that’s fallen. (laughs) – We got one minute left,
let’s do lightning round, go. – Alright, here we go, you know what, this is an education
question so let’s do it. – Let’s do it, lightning round. – Stephen Donham, he says,
“Hey Neil, love your show, “listen all the time, my question
is about common core math “being taught in school, it
seems like a waste of time, “and kids have to go through
all of these extra steps “to get the right answer
when there were simpler ways “to get the right answer when it comes “to life and death and
space; would it not be better “to get the right answer
the fastest possible way?” – Oh, good question, okay.
– Very good question. – I am not doing a lightning
round on that question. – Okay.
– It’s too important. – It is a very important–
– I’m gonna end with my answer to that question, okay? – So this is the end of the show, and– – I’m doing deep dive on
educational philosophies– – Well, that’s why I picked the question. – In my recent months and years. – Well, you’re in education,
you’re an educator, so. – A deep dive, and I’m looking
at what people have said, what have worked, what
haven’t, best practice, and I have come to conclude
with regard to that question: what matters more than the right answer is the right question.
– Interesting. – And taking a cue from Isaac Asimov, in an essay he once wrote called
“The Relativity of Wrong,” – “The Relativity of Wrong,” you know– – Yes, okay so here you go,
you’re in elementary school, and I have a spelling bee
and I ask you to spell cat. And you spell it K-A-T, it’s marked wrong. You don’t get any credit for that ’cause the correct answer is C-A-T. But suppose instead you
had spelled it, X-Q-W. It’s still marked wrong. – And that’s so much
farther away than K-A-T. – It’s so much farther away that K-A-T. In fact, you could argue that
K-A-T is a better spelling than C-A-T, you know why? ‘Cause if you look up
cat in the dictionary, C-A-T, the phonetic
spelling is K-A-T, okay? – (laughs) That’s awesome. – But you got it marked wrong. So this urge to get the right
answer, yes, I don’t want to diminish the importance of
right answers, that has value, but it has less value
than you think it does, because in exploration,
you have no answers. You are on the precipice, the boundary between what is known and what is unknown, and you’re taking a
step into that unknown. And you don’t know what’s there, you don’t even know what question to ask. – I know what’s there, a cat. – But you’re probing, you’re poking, you’re trying to figure
out what question to ask. And so, and most questions
don’t even have– – Have an answer.
– Unambiguous answers. Can I give you an example? – [Chuck] Go ahead. Okay, what’s the diameter of the sun? Ask me that. – [Chuck] What is the diameter of the sun? – You look it up, it’ll say
864,000 miles, okay, fine, but in what wavelength of light
did you make that measurement? Other wavelengths of
light emerge from deeper in the star, okay, and
if you’re using x-rays, it’s bigger, the corona emits x-rays. – We found that out earlier in the show, because of the different wavelengths. – It’s a different wavelength. So you have to specify. How high up does the atmosphere
go, earth’s atmosphere? Oh, 62 miles, 100 kilometers,
that’s just, we’ve just agreed ’cause that’s a
round number in kilometers. There’s still air
molecules above 62 miles! That’s why we have to
boost the Hubble Telescope every now and then
because air molecules are knocking it out of orbit, okay? So there is no demarcation
line, it fades until it blends with the interplanetary medium. So we like tidy answers, but
most of science is not even about the answer, it’s about
the general understanding of what’s going on, and
then you take it from there. So no, common core math is a good thing. It’s got you thinking in
ways that it will enable you to tackle a problem in the future that you have never seen
before, and if you’re in space, it’s not about knowing the right answer to a pre-designated
question, it’s about figuring out an answer to a question
no one has asked before. So you need the tools and
the methods and the power of inquiry to accomplish that. – Wow, there you go, drop the mic. That’s a very good answer.
– I’m saying! I’m writing this up
– I like it, it makes sense. – It’s going in the next thing. – Alright. – Chuck.
– This was good, man. – Always good to have you.
– Yeah. – Namsain?
– Yamean? (hosts laugh) – This has been “StarTalk,”
I’m Neil deGrasse Tyson, your personal astrophysicist,
we’re recording this in my office–
– The cosmic crib. – The cosmic crib at
the Hayden Planetarium in New York City, part
of the American Museum of Natural History, and as always, I bid you to keep looking up. – [Chuck] Thanks to CuriosityStream for supporting this episode of “StarTalk.” The universe is full of mysteries as you’ve seen in this episode. Well, CuriosityStream has a video about the universe in their
“Curious Word” series. See that, it’s called a “Curious World,” and it comes in a series. The animations are so engaging, I could’ve watched the
video with the sound off. But don’t do that, you
wanna learn something. They show you everything
from star formation to theories about dark matter, and most importantly, how
planets like earth formed, which is important because, you know, I live here on earth. You can watch it for just $2.99 per month, and if you go to
curiositystream.com/startalk and use code StarTalk, your
first 31 days are free. Go there right now, with over
2,400 documentary features and series to enjoy, you
cannot beat CuriosityStream.

Cosmic Queries – Across the Universe with Neil deGrasse Tyson

100 thoughts on “Cosmic Queries – Across the Universe with Neil deGrasse Tyson

  • August 29, 2019 at 2:01 pm

    What is your favorite part of the universe?

  • August 31, 2019 at 3:03 pm

    Sorry if this question was already asked but I’m not reading through comments. Where did that globe behind Neil come from? Thanks

  • August 31, 2019 at 3:53 pm

    Neil is a Disgrace tyson

  • August 31, 2019 at 3:54 pm

    80 questions disgrace Tyson can answer

  • August 31, 2019 at 4:12 pm

    What if you went back in time when Greeks were here then bring future items even computers and toys and tools from you time in there time what will happen?

  • August 31, 2019 at 4:29 pm

    Couldn't even give attribution to T. S. Eliot? How wrong.


  • August 31, 2019 at 4:29 pm

    Neil – u r an inspiration

  • August 31, 2019 at 5:32 pm

    That mic drop at the end 🤣

  • August 31, 2019 at 5:48 pm

    adults having fun. great job

  • August 31, 2019 at 6:03 pm

    Polish – polish thing is also true for Turkey – turkey

  • August 31, 2019 at 6:36 pm

    Neil: spewing complicated facts

    Chuck: yeah, uh-huh, right, yep, yes

    Viewers: (stop it Chuck!)

  • August 31, 2019 at 6:41 pm

    The teacher joke was amazing lol

  • August 31, 2019 at 6:43 pm

    I get the feeling that Chuck is going to start trying to answer questions soon 🤦🤦🤦

  • August 31, 2019 at 7:13 pm

    If I have a question for Neil, where do I go to ask him?

  • August 31, 2019 at 7:23 pm

    I would love to see Mr. Tyson play Outer Wilds game and comment it, that would be a bliss 🙂 The game that touches the mysteries of the universe in a very philosophical way ^_^

  • August 31, 2019 at 10:47 pm

    I Have a question for you Mr Neil deGrasse Tyson, I am GOD, do you have a question for me ? 😉 😉 😉

  • August 31, 2019 at 10:55 pm

    Do you get sponsored by the NRA? Heard about your statistics and was really shocked

  • August 31, 2019 at 11:13 pm

    Neil deGrasse Tyson needs to visit Africa and come help start a SPACE program here. Hope he does one day. From his African fan.

  • August 31, 2019 at 11:29 pm


  • August 31, 2019 at 11:36 pm

    Nei the smartest guy on TV

  • August 31, 2019 at 11:44 pm

    Ancestral universe theory

  • September 1, 2019 at 12:09 am

    when you turn on a flashlight it creates an recoil yes a light beam

  • September 1, 2019 at 12:09 am

    Blasphemy, everyone knows the earth is flat and the center of the universe. God wills it

  • September 1, 2019 at 1:41 am


  • September 1, 2019 at 1:50 am

    That was a mic drop answer for sure at the end!

  • September 1, 2019 at 1:57 am

    I can’t stand that a brilliant mind such as NDT’s has to laugh at Pixar jokes by a D-class “comedian.” He doesn’t need anyone. He’s a genius. We just want to hear him talk. No need for “comic relief.” Beyond annoying.

  • September 1, 2019 at 2:23 am

    I enjoyed the conversation up until Tyson said "common core math is a good thing ".

  • September 1, 2019 at 2:46 am

    You guys are so awesome.. best show.. period

  • September 1, 2019 at 3:14 am

    Would love to see Dave Chappell on. He would tear this…… stuff up

  • September 1, 2019 at 3:23 am

    I believe Neil was slightly incorrect about the wheelchair spinning in the opposite direction. The wheelchair would slowly begin to spin in the direction of the wheels due to the friction drag between the axle bearings and the chair. That is if the wheels were powered by rockets as the questioner asked.

  • September 1, 2019 at 3:35 am

    ….across youtube loL

  • September 1, 2019 at 4:13 am

    The jokes are fine, but sometimes it is excessive

  • September 1, 2019 at 4:55 am

    you cant light fireworks in space

  • September 1, 2019 at 5:57 am

    Watch time lapse of the universe by melodysheep highly recommend

  • September 1, 2019 at 6:42 am

    Mind Blown! thank you Dr. Tyson.

  • September 1, 2019 at 8:27 am

    ….you've gotta just love Neil deGrasse Tyson, he makes our productions look so real!

  • September 1, 2019 at 8:56 am

    Dynamic Duo🙌

  • September 1, 2019 at 9:05 am

    Love your show! I've got an unusual question.. Does a closed path homopolar generator work?

  • September 1, 2019 at 9:14 am

    Finally something useful for understanding the existence of self than watching Darwin award doing justice.

  • September 1, 2019 at 9:35 am

    Neil always looks wrecked……little toot of the herb or shots of top shelf whiskey or severely tired from a killer busy schedule

  • September 1, 2019 at 9:43 am

    The pair of you are the guardians of my galaxy. MIC-DROP

  • September 1, 2019 at 11:57 am

    Wow that first question was pretty awesome

  • September 1, 2019 at 11:57 am

    But of course dr. Tyson rocked it

  • September 1, 2019 at 12:12 pm

    wave, particle, wavicle. If your aim is to describe the universe with symbols I'll save you the trouble. (Universe)

  • September 1, 2019 at 12:29 pm

    20:00 Neil declares physics a LGBTQ ally

  • September 1, 2019 at 2:17 pm

    Why the comic? Please give us SERIOUS SCIENCE

  • September 1, 2019 at 2:37 pm

    Jaques Crusoe would be proud. Y’all went deep….

  • September 1, 2019 at 2:55 pm

    Is it fair to say the simplest analogy of the known data we have available on gravity the universe would be the experiment marbles with food colouring with a piece of paper emerged in water? The marbles being planets ect. Pull the sheet of paper would be the best way of explaining our 2 dimensional theory?

  • September 1, 2019 at 4:04 pm

    Chuck Nice is the Morgan Freeman of comedy.

  • September 1, 2019 at 4:22 pm

    Please, let me put a question for Professor Neil deGrasse Tyson about STORMS: Cyclones, Hurricanes and Tornadoes.
    From THE SPACE:
    (i) It is very hot? Send something very cold to it’s eye.
    (ii) It is very cold? Send something very hot to it’s eye.
    Who knows if it will not dissipate?
    Is this possible?

  • September 1, 2019 at 5:33 pm

    "I'd go to the moon in a nanosecond. The problem is we don't have the technology to do that anymore. We used to, but we destroyed that technology, and it's a painful process to build it back again." – Don Pettit

  • September 1, 2019 at 5:33 pm

    What ever happened to the second Cosmo's? last fall they said end of March.

  • September 1, 2019 at 6:39 pm

    Last question was awesome..and explaination was even better 🤗

  • September 1, 2019 at 6:55 pm

    So we's all come about cos the universe escaped from a rubber tyre and here's me thinking some god dunnit all. Flippin eck!

  • September 1, 2019 at 8:10 pm

    Love your comment on information evolution vs the expectations of energy control back in the days. We still fantasize about travelling effortlessly on great distances to venture the cosmos. Maybe the comparison won't stop there: Maybe we'll finally find satisfaction by "only knowing" what's out there and experience it here on various form of communication systems (VR and so on…). Maybe it's just another path toward exploration…

  • September 1, 2019 at 8:40 pm

    Don't listen to this nonsense. This priest of scietism claimed a football goal was scored because the earth moved a third of an inch in the timethe ball left the earth ! He's claiming coreolis . if it works for football's then it must work for helicopters.
    But we don't see this in reality.
    Therefore the
    earth is not turning. There is no scientific experiment that can prove axial rotation.

  • September 1, 2019 at 9:08 pm

    If you think about the origin of the universe as being formed by positive and negative parts (therefore the sum of them leads to "nothing" as Neil says), then the universe would end up constantly be nullifying itself, which doesn't make any sense. In order to release that huge amount of energy (named the big bang), something must interact with those "positive and negative" parts, because if the universe were just a perfectly bunch of +1s and -1s, it would be 0 forever, right? A 0 will always be a 0 unless something interacts with it.
    I'm confused! 😭

  • September 1, 2019 at 9:57 pm

    Neil, I can say that Polish people love this show. Now we love it even more 😀

  • September 1, 2019 at 10:08 pm

    Herb vs herb

  • September 1, 2019 at 10:28 pm

    NDT is a fraud. IIiiii said it!!!!

  • September 1, 2019 at 10:31 pm

    I am Just waiting for that 22h of star talk 😋

  • September 1, 2019 at 11:06 pm

    I consider the heat death of the universe to be sexy talk. This is my red light district.

  • September 2, 2019 at 12:20 am

    The answer to the last question was very thought provoking! Thank you Neil, you are one of my most favorite persons!

  • September 2, 2019 at 12:34 am

    if i saw Neil mug a guy for papers i would immediately think he was saving the world from knowing the world is a sentient being.

  • September 2, 2019 at 12:54 am

    I knaw y'sayin'

  • September 2, 2019 at 12:56 am

    24:53 Oh no you di-int! :O

  • September 2, 2019 at 1:03 am

    wow those chairs look uncomfortable

  • September 2, 2019 at 1:20 am

    I love these guys. Highly imaginative and creative.

  • September 2, 2019 at 6:36 am

    The interviewer is very obnoxious

  • September 2, 2019 at 8:02 am

    I can't believe you missed the "Great Filter" question. Lol!

  • September 2, 2019 at 9:21 am

    Neil what do you say about the high red-shift galaxies being found in front of or attached to low red-shift galaxies (or I believe it was quasars actually?) This goes back to the time of Halton Arp and I've never seen a reasonable reply as to why this is NOT a death blow to the big bang hypothesis, seeing that we KNOW there is a Non-recessional velocity component to red-shift?

  • September 2, 2019 at 12:21 pm

    I heard the earth is a pyramid

  • September 2, 2019 at 12:59 pm

    19:19 – me entering a party full of nerds

  • September 2, 2019 at 5:15 pm

    4 minutes in, i hate the retarded comedian. always interrupting, making childish jokes.

  • September 2, 2019 at 8:00 pm

    When you capitalize "t" in turkey it becomes Turkey. 🙂

  • September 2, 2019 at 9:29 pm

    I miss you guys in chat already

  • September 2, 2019 at 10:05 pm

    19:15 This is how I want my science to be presented. Exactly like this.

  • September 2, 2019 at 11:38 pm

    40:00 The Great Filter – I think there is a misunderstanding here on what this is. The idea of the great filter would prevent civilizations from advancing to a point of over taking the Universe. It's an interesting concept but I don't really believe in it. We have our own little filter in our solar system. It's called an Asteroid Belt, and from time to time, it clunks us a good one.

  • September 2, 2019 at 11:44 pm

    Mr. Tyson, my son and I love the show, is it possible to ask you a question and have it answered? We are having a small debate. Even if not, still love the show

  • September 3, 2019 at 1:47 am


  • September 3, 2019 at 3:11 am

    How did i not know about this channel 🤯

  • September 3, 2019 at 3:39 am

    Michio Kaku is pushing this "great filter" expression for years now and Neil goes like… "never heard of it" (of course he did). "Let's go check Wikipedia – LOL". DROPS MIC!

  • September 3, 2019 at 7:02 am

    StarTalk is back! woohoo! Neil, I wish I could shake your hand to welcome you back 😉

  • September 3, 2019 at 8:08 am

    Not a big fan of the other dude

  • September 3, 2019 at 8:16 am

    jist a thought: if you are in zero gravity and need som propulsion, you could vomit in the opposite direction to get where you want to go

  • September 3, 2019 at 8:58 am

    Neil would have kicked him out of the class within minutes..

  • September 3, 2019 at 11:33 am

    I'm going to see Neil in person in April!!!!

  • September 3, 2019 at 12:23 pm

    FFS it's BS

  • September 3, 2019 at 1:45 pm

    Why does chuck always have to make jokes in the middle of an explanation? Let Neil finish without interrupting with your not funny jokes, so annoying.

  • September 3, 2019 at 2:29 pm

    I need that new season of Cosmos Neil!!

  • September 3, 2019 at 3:02 pm

    You know I really want to know/I have Ben thinking if atoms are the building blocks of life and if the entire universe has a end how can/did atoms make elements/stuff in total darkness/dark matter 🧐 seems interesting 🤔

  • September 3, 2019 at 6:26 pm

    Deus pascit corvos
    Savior, conqueror, hero, villain. You are all things, Revan… and yet you are nothing. In the end, you belong to neither the light nor the darkness. You will forever stand alone.
    Deify no mortal!

  • September 3, 2019 at 7:35 pm

    @ 22:36 I don't give a "she-ee-ee-ee–e-it." Hehehhe

  • September 3, 2019 at 8:50 pm

    That was good, thanks y'all.

  • September 3, 2019 at 8:53 pm

    That guy next to Neil is not suit to do this program. He must find jobb in comedy .

  • September 3, 2019 at 11:33 pm

    Great questions! Especially the first one.

  • September 4, 2019 at 1:29 am

    48:35 – Reason why I love Neil, could listen to his his passion all day

  • September 4, 2019 at 4:48 am

    great rapport between these two dudes; chuck is the joker, tyson is the straight man

  • September 4, 2019 at 4:52 am

    i’m telling you, and i’ve been screaming this for a couple years: after neil was on joe rogan, EVERYONE starts every explanation with “Soo..”. now ubiquitous, that’s where it started. fight me.

  • September 4, 2019 at 5:37 am

    "NO M SAYIN" 😂😂😂
    I like how chuck makes that sound of ummhummm😂😂😂


Leave a Reply

Your email address will not be published. Required fields are marked *